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Abstract 

This paper presents a multi-domain boundary face method (MD-BFM) for 
solving steady-state heat conduction problems on large-scale engineering 
structures. In the BFM, both boundary integration and variable approximation 
are performed in the 2-D parametric space of the boundary surfaces of the body 
in question. The surface parameters are obtained through the boundary 
representation data structure (B-rep) implanted in all CAD packages. The 
geometric quantities in the boundary integrals of the BIE are computed directly 
in the parametric spaces of the surfaces to avoid geometric errors. On the other 
hand, a MDBFM is necessary for structures of complex shapes or constituted of 
different kinds of materials. In this work, the multi-domain BFM is developed 
and applied for heat conduction analysis of a real gravity dam. Numerical results 
have demonstrated that our method can achieve comparable accuracy than other 
methods (e.g. the FEM), but at much lower costs in terms of both computer 
resources and human labor. 
Keywords: boundary face method, steady state heat conduction, multi-domain 
problem, large scale problem. 

1 Introduction 

Problems of heat conduction find important application in engineering. Many 
numerical methods have been proposed to solve these problems, such as the 
finite difference method (FDM) [1, 2], the finite volume method (FVM) [3, 4], 
the finite element method (FEM) [5, 6] and the boundary element method (BEM) 
[7, 8].  
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     In practical analysis, structures of complex shapes are usually of very large 
size.  The computation scale of thermal analysis by FEM implementation will 
exceed hundreds of millions degrees, and this level of analysis cannot be 
performed in micro-computers. Because of the computational scale limitation, 
the overall analysis on the dam body by FEM is usually unavailable. In practical 
applications, many special elements including multi-layer element are usually 
employed [9, 10]. The employment of these special elements, however, will 
inevitably introduce errors. 
     In the conventional BEM implementation of structural analyses, a geometric 
model is firstly built with a CAD package. Then, using a meshing tool, the 
geometric model is converted into a discrete model. The CAD and BEM are 
treated as separate modulus requiring different methods and representations [11], 
which include continuous parametric models and discrete models, respectively. 
In BEM, the elements are used for boundary integration and approximation of 
geometry. Once the BEM model is constructed from CAD, the information of 
geometry is only derived from standard elements. Therefore, geometric errors are 
introduced. Moreover, the link between BEM model and CAD system is 
often difficult to obtain, thus making it difficult to carry out adaptive mesh 
refinement [12]. 
     To cope with the problems above, we have developed a boundary integral 
equation (BIE) based method, which is called the boundary face method (BFM) 
[13–15]. In BFM, both boundary integration and variable approximation are 
performed on boundary faces, which are represented in parametric form exactly 
as the boundary representation data structure in most CAD systems. The 
parametric surface, which encapsulates the exact geometry of corresponding 
face, is discretized by surface elements in parametric space. These elements are 
used for the boundary integration and variable approximation. For boundary 
integration, however, the geometric data at Gaussian quadrature points, such as 
the coordinates, the Jacobian and the outward normal are calculated directly from 
the faces rather than elements, thus no geometric error will be introduced. The 
direct boundary integration and approximation in parametric space of surfaces 
forms an intrinsic feature of the BFM when compared with the conventional 
BEM. 
     Many implementations of the BFM can be found. Qin et al. [16] implement 
the BFM by employing a finite element scheme. In Qin’s implementation, the 
element was defined in the parametric space of the boundary surfaces. The mesh 
was also generated in the parametric space. Gu et al. [17] used a B-spline 
interpolation scheme for physical variables approximation in the BFM. And by 
employing the same interpolation function as in the geometric modeling, Gu et 
al. [18] performed a iso-geometric analysis based on the BFM. Zhuang et al. 
[19] implemented the BFM on the geometric models which are constructed 
through the subdivision surfaces. By introducing a specified element, the BFM is 
applied for analysis of structures containing tubular cavities [20]. 
     The BFM was also extended for many engineering problems. By combining 
with the dual reciprocity, Zhou et al. [21] extended the BFM for the non-
homogeneous heat conduction problem and non-homogeneous elasticity 
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problem. To solve the transient heat conduction problem, Zhou et al. coupled the 
BFM and the convolution quadrature method. The transient heat conduction 
problem was also solved by Guo et al., using a Laplace transformation method 
and the multiple reciprocity BFM. The BFM was extended for acoustic problems 
by Wang et al. For large scaled problem, Wang et al. coupled the BFM and the 
fast multiple method (FMM) to accelerate the computation. 
     All the mentioned application was based on problem containing a single 
domain. Engineering structures, however, are usually very complex and should 
be divided into many subdomains in actual analysis. This paper extends the BFM 
for steady-state heat conduction problems on multi-domain models. The matrix 
assembling is of great importance in the multi-domain computation. The method 
for assembling three domains which are connected by each other will be 
described in this paper. As an illustration example, a steady state heat conduction 
analysis on a real gravity dam will be performed by the multi-domain BFM. The 
considering structure will also be analyzed by the finite element method which is 
conducted in the ABAQUS. A comparative study between results obtained by 
both methods will be made. 
     This paper is organized as follows: Sec. 2 describes the BFM for steady-state 
heat conduction problem. The following section illustrates the multi-domain 
BFM and the matrices assembling in detail. The numerical example is presented 
in Sec. 4. This paper ends with conclusions and some future work. 

2 Boundary face method for 3D steady heat conduction  

2.1 Boundary integral equation  

The steady heat conduction problem in three dimensions can be mathematically 
described as 
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where   is the corresponding domain which is enclosed by u q    . On the 

essential boundary u and the flux boundary q , we impose the boundary 

condition u  and q , which denote the prescribed temperature and the normal 
flux, respectively. n with components in , 1,2,3i  is the outward normal on the 

boundary  . 
     The problem can be converted into an equivalent BIE which is described as 
the following formulation 
 ( ( ) ( )) ( , ) ( ) ( , )s su u q d q u d

 
    s y s y s s y  (2) 

In this formula, y and s stand for the field point and source point, respectively. 
q u n    is the boundary normal flux. us(s, y) and qs(s, y) are the corresponding 

fundamental solutions which satisfy                                      
 , ( , ),s

iiu y s s     (3) 
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and 
  ( )s sq u n s     (4) 

For 3-D problems, 

 
1 1
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s y

 (5) 

where r is the distance between y and s. 

2.2 Boundary face method 

In this sub-section, an effective Lagrange approximation method, which is based 
on the surface element, is presented. The surface element is defined in 2-D 
parametric space of the surface rather than in the physic space or other 
parametric spaces. Thus the geometric components in the considered boundary 
integral can be computed directly through a parametric transformation. And this 
parametric transformation is the same as the mapping scheme in the parametric 
surface, in other word, the geometric quantities in the integral are exactly 
obtained. A four-node quadrilateral surface element is taken as an illustration 
example of the physical variable approximation. 
 

  

Figure 1: Four-node surface element and coordinate mapping. 

     The corresponding shape functions we construct in this implementation are 
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     It should be emphasized here that, these shape functions are only applied to 
approximate the physical variables on the boundary surfaces. The geometric 
quantities keep exact in this implementation, and this is the main difference from 
the standard BEM. 
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where x=x(u, v), y=y(u, v) and z=z(u, v), uk and qk are values of temperature and 
the normal flux on boundary nodes, N is the total number of interpolating points. 

u

v




12

3 4

12

3 4

1 1( , )u v
2 2( , )u v

3 3( , )u v 4 4( , )u v

288  Boundary Elements and Other Mesh Reduction Methods XXXVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



     With this approximation scheme, Eq. (2) is discretized into: 
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     After we collocate the field point at every interpolation point, we will get the 
following system: 
  Gq Hu 0  (9) 
in which 
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and 
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3 The multi-domain boundary face method 

In this section, we concern the multi-domain boundary face method for steady 
state heat conduction problem. Three cubes are illustrated as examples in Fig. 2. 
 

 

Figure 2: The sketch map of 3 cubes. 

     In this model, cube 1 and cube 2 intersect in 12 , cube 1 and cube 3 intersect 
in 13  and cube 2 and cube 3 intersect in 23 . On the intersection boundaries, we 
have the condition: 
 i ju u   (12) 

and 
 i jq q    (13) 

     For cube 1, the boundary integral equations are: 
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in which the symbols , ,d n r  stand for the boundary conditions of Dirichlet type, 
Neumann type and Robin type, respectively. Subscripts 2 and 3 denote for the 
areas where the boundary of cube 1 intersects with cube 2 or cube 3. By 
considering the boundary condition, we reassemble the above boundary integral 
systems into:   

 

1 1 1 1 1 1 1 1
2 3 2 3

1 1 1 1 1 1 1 1
2 3 2 3

1 1 1 1 1 1 1 1
2 3 2 3

1 1 1 1 1 1 1 1
2 2 2 2 22 23 22 23
1 1 1 1 1 1 1 1
3 3 3 3 32 33 32 33

( )

( )

( )

( )

( )

dd dn dr dr d d d d

nd nn nr nr n n n n

rd rn rr rr r r r r

d n r r

d n r r

G H H G H H G G

G H H G H H G G

G H H G H H G G

G H H G H H G G

G H H G H H G G







    
    
    
    
    

1

1 1 1 1

11 1 1 1

1 11 1 1 1
2

11 1 1 1
3 2 2 2
1 1 1 1
2 3 3 3
1
3

d

n dd dn dr

dr nd nn nr

nrd rn rr

d n r

d n r

q

u H G G

uu H G G

q yu H G G

u H G G

q H G G

q



 
                           

            
         

 
 







 (15) 

     The same as cube 1, for cube 2 and cube 3, we also have the following 
reassembled boundary integral systems: 
     Considering the interacting condition and denoting k k k

ir ir irF H G   , we have 

the final systems for solution: 
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4 Numerical examples 

In this section, we solved a steady-state conduction problem of a massive gravity 
dam with the BFM and FEM (obtained from ABAQUS), and made comparisons 
between them.  
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4.1 Geometry of the model 

Fig. 3 shows the cross-section of the dam. To reduce the computational scale, 
only a part of the dam (a thin piece with width of 20 meters) is modeled. The 
computational model consists of two parts: the dam body and the rock 
foundation.  

 

Figure 3: Model of a gravity dam. 

     The height of the dam body is 171 meters, and the width of the part touching 
with rock foundation on the first concrete layer is 157 meters. The gradient for 
downstream slope is 1:0.73. The length and the height of the rock foundation are 
471m and 157m respectively. Besides, the dam body was divided into 62 layers, 
each layer has various thicknesses. 

4.2 Material properties 

Table 1 provides summaries for the properties of roller concrete and normal 
concrete, respectively. The material of the first two layers is roller concrete. The 
other layers are normal concrete. Moreover, it is worth noticing that the material 
of the rock foundation is assumed to be roller concrete. 

Table 1:  Properties of roller concrete and normal concrete. 

 Heat conductivity 
/ ( )kJ m h    

Specific heat 

/ (kJ kg  Cº )  

Density 
3/kg m  

Roller concrete 9.27 0.9672 2400 

Normal concrete 8.766 0.9672 2450 

4.3 Boundary condition 

There are three kinds of boundary conditions in this analysis. First, boundary 
condition of fixed air temperature which is the annual average temperature. 
Second, boundary condition of water temperature. Third, adiabatic boundary that 

Boundary Elements and Other Mesh Reduction Methods XXXVI  291

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



there is no change in temperature in the direction normal to the planes, 
i.e.: / 0.0T n   . 
     Adiabatic boundary condition is imposed on the faces of the right and left 
sides, the bottom of the rock foundation, the front and back sides along the river 
direction. The upstream water level is 162m. Areas above the height of 
375 meters, the top faces and downstream areas on dam body, right side on rock 
foundation are exposed to atmosphere. Boundary condition of water temperature 
is shown below: 
1. A deep water temperature of 13.4ºC is added to areas that located 123.4m 
below water face.  
2. A linear function is used in shallow water area. The fitting function is: 
 
 20.7 0.0591572 *wT h   (17) 

4.4 The mesh model 

In FEM analysis, we define hexahedral elements consisting of 16 nodes per 
element. The total number of elements is 47432, with 272300 computing nodes 
(see Fig. 4(a)). In BFM, there are 6494 quadratic elements consisting of 8 nodes 
per element (including triangular and quadrilateral elements) and 29139 
computing nodes (see Fig. 4(b)) 
 

  

 (a) Mesh model of FEM             (b) Mesh model of BFM. 

Figure 4: The comparison of mesh model of FEM and BFM. 

4.5 Comparison between FEM and BFM 

Fig. 5 shows a comparison of temperature distribution between FEM and BFM. 
     Comparing the figures, we can see that the computing results of BFM are 
consistent with the result obtained by ABAQUS. Therefore, we can draw a 
conclusion that BFM can be applied to analysis of steady-state heat conduction 
in large-scale engineering problems with good accuracy and high efficiency. 
Moreover, in our method, human labor is much less than other methods (e.g. the 
FEM). 
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  (a) Computing results of FEM            (b) Computing results of BFM 

Figure 5: Comparison between FEM and BFM. 

5 Conclusions and future work 

The steady heat conduction problem on a dam body which consists of 62 layers 
is solved by the multi-domain BFM. The solution is demonstrated and compared 
with the FEM implementation. The comparison illustrates that the BFM is very 
accurate in computations of temperature and is suitable for steady-state thermal 
analysis in dam construction. 
     For further study, a transient heat conduction problem on multi-domains will 
be considered. Further accelerating the computation by optimization of domain 
matrices assembling will also be studied in our future work. 
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